Discovery Undercover: What’s Next?

François Robert and Richard Tosdal
CMIC Exploration Innovation Consortium
June 6, 2017
Introduction

• Context
 – Exploration challenges remain acute in Canada
 – EIC Roadmap still relevant
 – Successor project needed by mid-2018
 – Tight timeframe to get something in place

• Outline
 – Update on Discovery Under Cover project
 – Highlight challenges
 – Other relevant national and international initiatives
 – Concluding remarks
CMIC Exploration Innovation Consortium

• Created 2010 under CMIC
 – Industry-driven

• Vision
 – Improve discovery rates
 – Through step-changing applied R&D and innovation

• Objectives
 – Define exploration challenges
 – Develop roadmap
 – Catalyst for relevant projects

• ~35 Partners
 – Exploration companies
 – Service providers
 – Institutions

• Approach
 – Extensive consultation
 – Part-time consultant (Tosdal)
 – Full time CMIC person (Galley)
 – Dedicated Industry champions
10-year Innovation / R&D Program

<table>
<thead>
<tr>
<th>Deep Mature Camps</th>
<th>Remote & Covered Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Multi-parameter footprints and 3D vectoring</td>
<td>1. Characteristics of fertile terranes and districts</td>
</tr>
<tr>
<td>• Detecting edges and vectoring to ore</td>
<td>• How to identify most fertile areas?</td>
</tr>
<tr>
<td>2. Techniques to unravel deep 3D geology</td>
<td>2. Techniques to map sub-surface geology</td>
</tr>
<tr>
<td>• Deep penetrating detection and mapping techniques</td>
<td>• Drilling, data integration</td>
</tr>
<tr>
<td></td>
<td>• Data density for detection</td>
</tr>
<tr>
<td>• Real-time decision</td>
<td>• Understand mechanisms</td>
</tr>
<tr>
<td></td>
<td>• Develop techniques</td>
</tr>
</tbody>
</table>
Why Discovery Under Cover?

• **Technical challenge**
 – 78% of Canada concealed by lakes and surficial deposits
 – Can detect “anomalies” but techniques not predictable

• **Focus**
 – Processes of migration to surface
 – Sampling & analytical techniques

• **Benefits**
 – Fewer barren holes (<$$>$)
 – Reduced environment footprint!
Project Status

• Process to date
 – Enlisted Canada’s top 3 experts
 – Industry consultation
 Workshops (Q1)
 – Historical work reviewed

• Where we are (+/- on track)
 – Gap analysis completed
 – 6 key problems identified
 – 3 focus areas agreed upon

• Next steps
 – Develop relevant program for each focus area
 – Engage with other groups disciplines for novel ideas

• Year-end target (stretch!)
 – Identify funding vehicle(s) & management structure
 – Circulate high-level proposal to potential sponsors
Program: Three Focus Areas

• **Processes of migration**
 – How elements move
 – Under which conditions

• **Tools & Technology**
 – Define techniques of choice
 – Develop new tools

• **Protocols**
 – Design efficient surveys
 – Improved success

Metal migration is complex

From Kyser (2017)
Project Approach

• **New disciplines for new ideas**
 – Nuclear storage, molecular biology
 – Soil, agricultural, and material sciences, etc.

• **New technologies & application**
 – Genomics/fingerprint bacteria
 – Lab simulation experiments
 – Analytics for data integration

• **...with geoscience partners**

From Winterburn (2017)
Anticipated Challenges

• **Access to expertise**
 – Limited national expertise in Exploration geochemistry
 – International collaboration required

• **Funding vehicle**
 – NSERC rules limiting (outside funding, open access)
 – Creative avenues to be explored

• **Project duration**
 – 5 years required for impact
 – 3 years preferred by Industry Partners
Coordination with National Initiatives

• **Metal Earth**
 – Strategic consortium led by Laurentian
 – Canada First Research Excellence Fund
 – $104M / 7 years ($49M from CFREF)

• **Focus**
 – Fertility of terranes and districts
 – Craton, transects, thematic, analytics

• **Links with EIC**
 – Addresses key roadmap component
 – New Director = active member of EIC

Remote & Covered Areas

1. **Characteristics of fertile terranes & districts**
 - How to identify most fertile areas?

2. Techniques to map sub-surface geology
 - Drilling, data integration
 - Data density for detection

3. Secondary metal dispersion
 - Understand mechanisms
 - Develop techniques
Monitoring International Initiatives

Deep Mature Camps

Real-time down-hole data collection
- Real-time decision

Remote & Covered Areas

Techniques to map sub-surface geology
- Drilling, data integration

Reflex Lab-at-Rig

- Real-time data from drill muds & chips
- Mineralogy, geochemistry & processing for geology and orebody proxies

DET CRC Coiled Tubing Drilling

- Cheaper, faster, safer, small footprint
- Can be used for “prospecting” drilling

![Photo courtesy of Reflex](https://via.placeholder.com/150)

XRF & XRD Processing

![Photo courtesy of DET CRC](https://via.placeholder.com/150)

50m/h, 500m depth, $50/m
<10 tonnes & small footprint
Other projects considered (2012-15)

• Exploration-focused
 – Permafrost drilling
 – Lightweight heli-portable drill
 – Muon technology
 – Exploration Simulator

• CMIC working groups links
 – Real-time portable analyzer
 – In-situ rock mass characterization
 – NOW: Environment management working group

Exploration Extraction Processing Tailings Remediation
Concluding Statements

• Focus on next EIC project
 – Need to be ready in time

• Discovery Under Cover
 – Next significant challenge for discovery in Canada
 – Progressing; significant engagement from stakeholders
 – Combination of Applied R&D and Innovation
 – Synergies with Environment
 – …but funding and timeline will be challenging